CENTRALIZERS IN DOMAINS OF GELFAND–KIRILLOV DIMENSION 2

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centralizers in Domains of Gelfandkirillov Dimension 2

Given an affine domain of Gelfand–Kirillov dimension 2 over an algebraically closed field, it is shown that the centralizer of any non-scalar element of this domain is a commutative domain of Gelfand–Kirillov dimension 1 whenever the domain is not polynomial identity. It is shown that the maximal subfields of the quotient division ring of a finitely graded Goldie algebra of Gelfand– Kirillov di...

متن کامل

Centralizers in Domains of Finite Gelfand-kirillov Dimension

We study centralizers of elements in domains. We generalize a result of the author and Small [4], showing that if A is a finitely generated noetherian domain and a ∈ A is not algebraic over the extended centre of A then the centralizer of a has Gelfand-Kirillov dimension at most one less than the Gelfand-Kirillov dimension of A. In the case that A is a finitely generated noetherian domain of GK...

متن کامل

Semistar dimension of polynomial rings and Prufer-like domains

Let $D$ be an integral domain and $star$ a semistar operation stable and of finite type on it. We define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong S-domains. As an application, we give new characterizations of $star$-quasi-Pr"{u}fer domains and UM$t$ domains in terms of dimension inequal...

متن کامل

Conjugacy Classes of Centralizers in G 2

Let G be an algebraic group of type G2 over a field k of characteristic 6= 2, 3. In this paper we calculate centralizers of semisimple elements in anisotropic G2. Using these, we show explicitly that there are six conjugacy classes of centralizers in the compact real form of G2. AMS Subject Classification: 20G20, 17A75.

متن کامل

semistar dimension of polynomial rings and prufer-like domains

let $d$ be an integral domain and $star$ a semistar operation stable and of finite type on it. we define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong s-domains. as an application, we give new characterizations of $star$-quasi-pr"{u}fer domains and um$t$ domains in terms of dimension ine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2004

ISSN: 0024-6093,1469-2120

DOI: 10.1112/s0024609304003534